Abstract

This paper reports our efforts to determine whether rotational spectroscopy is a useful tool for petroleum analysis. These efforts include the use of a BrightSpec molecular rotational resonance (MRR) spectrometer, which operates in the 260–290 GHz frequency range, to record rotational spectra of small polar contaminants in commercial gasoline. The observed rotational spectra showed rich, but assignable, patterns due to the sensitivity of the MRR to only small polar compounds. Any interference from a complex hydrocarbon matrix, which in conventional chromatographic methods obscures signals from small polar contaminants, is nearly eliminated. In addition to the evident rotational spectrum of ethanol, the spectra of toluene, ethyl cyanide, and acetaldehyde have also been detected. A quantitative method for ethanol has been developed and demonstrated in this paper, whereas the specific analyses of the other polar impurities will be reported in the future. The validity of MRR to be used as an analytical instrument has been examined by constructing a standard linear curve using dilutions of ethanol in water. The linearity and percentage recovery parameters are satisfactory.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription