Abstract

Laser finishing of glass can produce clean and strong edges without the need for mechanical grinding which can leave particles adhered to the surface. However, the thermal cycle involved in laser finishing can create a residual tensile stress that weakens the edge by causing crack growth at flaws. In this paper we investigate the residual stress in laser finished flat glass sheets as a function of processing conditions and glass properties. We demonstrate, for the first time to our knowledge, that under the right conditions, a laser finished glass edge can be generated with close to zero stress or with a compressive stress that is expected to hinder flaw growth.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shear stress in magnetorheological finishing for glasses

Chunlin Miao, Shai N. Shafrir, John C. Lambropoulos, Joni Mici, and Stephen D. Jacobs
Appl. Opt. 48(13) 2585-2594 (2009)

Thermal stress limitations to laser fire polishing of glasses

Y. M. Xiao and Michael Bass
Appl. Opt. 22(18) 2933-2936 (1983)

Stress measurements in glass by use of double thermal gratings

Bret D. Cannon, Chester Shepard, and Mohammad Khaleel
Appl. Opt. 40(30) 5354-5369 (2001)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [Crossref]
  2. Y. M. Xiao and M. Bass, “Thermal stress limitations to laser fire polishing of glasses,” Appl. Opt. 22(18), 2933–2936 (1983).
    [Crossref]
  3. C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
    [Crossref]
  4. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
    [Crossref]
  5. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
    [Crossref]
  6. H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
    [Crossref]
  7. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49(11), 1997–2005 (2010).
    [Crossref]
  8. Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
    [Crossref]
  9. W. M. Steen, Laser Materials Processing (Springer, 2003) 3rd Ed. Chap. 4.
  10. Product Information sheet for Corning EAGLE XG. https://www.corning.com/media/worldwide/cdt/documents/EAGLE_PI_Sheet_2017.pdf
  11. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26(9), 1728–1731 (1987).
    [Crossref]
  12. J. E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, 2005), Chap 3.
  13. https://www.ilis.de/en/strainscope.html
  14. See for example J. Barr, The Glass tempering Handbook, available online at https://dl.orangedox.com/IOM4ukrFcunESCW2Yh/TheGlassTemperingHandbook.pdf

2017 (1)

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

2016 (1)

Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
[Crossref]

2015 (2)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

2010 (1)

2006 (1)

1987 (1)

1983 (1)

1982 (1)

Ahsan, M. S.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Baker, H. J.

Bass, I. L.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Bass, M.

Choi, H.-K.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Choi, Y. S.

Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
[Crossref]

Elhadj, S.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Hall, D. R.

Jung, D.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Kang, H.-M.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Kim, J.-H.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Kim, J.-T.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Lowdermilk, W. H.

Matthews, M. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

McBride, R.

McLachlan, A. D.

Mendez, E.

Meyer, F. P.

Milam, D.

Noh, Y.-C.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Nowak, K. M.

Park, S. E.

Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
[Crossref]

Poprawe, R.

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

Raman, R. N.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Schmickler, A.

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

Shelby, J. E.

J. E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, 2005), Chap 3.

Shen, N.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Sohn, I.-B.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Steen, W. M.

W. M. Steen, Laser Materials Processing (Springer, 2003) 3rd Ed. Chap. 4.

Temple, P. A.

Villarreal, F. J.

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Weingarten, C.

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

Willenborg, E.

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

Wissenbach, K.

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

Wlodarczyk, K. L.

Xiao, Y. M.

Yang, S. T.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Yoo, D.

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Yun, J. U.

Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
[Crossref]

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Appl. Opt. (5)

J. Laser Appl. (1)

C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, “Laser polishing and laser shape correction of optical glass,” J. Laser Appl. 29(1), 011702 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

Y. S. Choi, J. U. Yun, and S. E. Park, “Flat panel display glass: Current status and future,” J. Non-Cryst. Solids 431, 2–7 (2016).
[Crossref]

Opt. Laser Technol. (1)

H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75(1), 63–70 (2015).
[Crossref]

Other (5)

J. E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, 2005), Chap 3.

https://www.ilis.de/en/strainscope.html

See for example J. Barr, The Glass tempering Handbook, available online at https://dl.orangedox.com/IOM4ukrFcunESCW2Yh/TheGlassTemperingHandbook.pdf

W. M. Steen, Laser Materials Processing (Springer, 2003) 3rd Ed. Chap. 4.

Product Information sheet for Corning EAGLE XG. https://www.corning.com/media/worldwide/cdt/documents/EAGLE_PI_Sheet_2017.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. System for laser finishing glass edges. (a) Schematic of glass sample held on heated vacuum chuck. (b) Schematic of rotating polygon mirror for laser heating the glass edge.
Fig. 2.
Fig. 2. Microscope images of laser finished edges for various laser power densities on Corning EAGLE XG glass. The laser exposure time was 2 seconds and the samples were preheated to 600°C in all cases.
Fig. 3.
Fig. 3. Microscope images showing the cross section of laser finished edges for various laser power densities. The position of each image corresponds with that of Fig. 2.
Fig. 4.
Fig. 4. Optimized laser power densities for edge finishing of EAGLE XG and glass A as a function of preheat temperature.
Fig. 5.
Fig. 5. Residual stress in laser finished glass sheets. (a) EAGLE XG, (b) Glass A. Positive values represent tension.
Fig. 6.
Fig. 6. Residual stress in laser finished EAGLE XG and Glass A as a function of preheat temperature. Symbols represent measured data and solid lines are linear fits. Positive values of stress represent tension.
Fig. 7.
Fig. 7. Temperature of glass edge during laser finishing process recorded by a thermal camera.
Fig. 8.
Fig. 8. Residual stress in laser finished glass edges with a controlled cool down depicted in Fig. 7. (a) Peak residual stress in EAGLE XG; (b) Stress vs distance in EAGLE XG; (c) Peak residual stress in Glass A; (d) Stress vs distance in Glass A. In (a) and (b) points represent measured data and solid lines represent linear fits to the data. No trendline was fitted to the data for the control samples in (a).

Tables (1)

Tables Icon

Table 1. Properties of glasses used in laser finishing experiments

Metrics