Abstract

$ ^{{151}}{{\rm Eu}^{{3} + }} $-doped yttrium silicate ($ {^{{151}}{{\rm Eu}}^{{3} + }}:{{\rm Y}_{2}}{{\rm SiO}_{5}} $) crystal is a unique material that possesses hyperfine states with coherence time up to 6 h. Many efforts have been devoted to the development of this material as optical quantum memories based on bulk crystals, but integrable structures (such as optical waveguides) that can promote $ {^{{151}}{{\rm Eu}}^{{3} + }}:{{\rm Y}_{2}}{{\rm SiO}_{5}} $-based quantum memories to practical applications have not been demonstrated so far. Here we report the fabrication of type II waveguides in a $ {^{{151}}{{\rm Eu}^{{3} }+ }}:{{\rm Y}_{2}}{{\rm SiO}_{5}} $ crystal using femtosecond-laser micromachining. The resulting waveguides are compatible with single-mode fibers and have the smallest insertion loss of 4.95 dB. On-demand light storage is demonstrated in a waveguide by employing the spin-wave atomic frequency comb (AFC) scheme and the revival of silenced echo (ROSE) scheme. We implement a series of interference experiments based on these two schemes to characterize the storage fidelity. Interference visibility of the readout pulse is $ 0.99 \pm 0.03 $ for the spin-wave AFC scheme and $ 0.97 \pm 0.02 $ for the ROSE scheme, demonstrating the reliability of the integrated optical memory.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Persistent atomic frequency comb based on Zeeman sub-levels of an erbium-doped crystal waveguide

Mohsen Falamarzi Askarani, Thomas Lutz, Marcelli Grimau Puigibert, Neil Sinclair, Daniel Oblak, and Wolfgang Tittel
J. Opt. Soc. Am. B 37(2) 352-358 (2020)

Laser-written integrated platform for quantum storage of heralded single photons

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera
Optica 5(8) 934-941 (2018)

Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory

Ryuzi Yano, Masaharu Mitsunaga, and Naoshi Uesugi
J. Opt. Soc. Am. B 9(6) 992-997 (1992)

References

  • View by:
  • |
  • |
  • |

  1. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
    [Crossref]
  2. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  3. Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
    [Crossref]
  4. Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
    [Crossref]
  5. I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
    [Crossref]
  6. J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
    [Crossref]
  7. T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
    [Crossref]
  8. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
    [Crossref]
  9. C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
    [Crossref]
  10. M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
    [Crossref]
  11. M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
    [Crossref]
  12. N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
    [Crossref]
  13. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [Crossref]
  14. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
    [Crossref]
  15. M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
    [Crossref]
  16. E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
    [Crossref]
  17. T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
    [Crossref]
  18. I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
    [Crossref]
  19. T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
    [Crossref]
  20. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
    [Crossref]
  21. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
    [Crossref]
  22. A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
    [Crossref]
  23. A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
    [Crossref]
  24. K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
    [Crossref]
  25. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
    [Crossref]
  26. M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
    [Crossref]
  27. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
    [Crossref]
  28. M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
    [Crossref]
  29. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  30. M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [Crossref]
  31. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
    [Crossref]
  32. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
    [Crossref]
  33. B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
    [Crossref]
  34. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
    [Crossref]
  35. M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
    [Crossref]
  36. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [Crossref]
  37. Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
    [Crossref]
  38. M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
    [Crossref]
  39. L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
    [Crossref]
  40. J. R. Klauder and P. W. Anderson, “Spectral diffusion decay in spin resonance experiments,” Phys. Rev. 125, 912–932 (1962).
    [Crossref]
  41. J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
    [Crossref]
  42. G. Demeter, “Coherence rephasing combined with spin-wave storage using chirped control pulses,” Phys. Rev. A 89, 063806 (2014).
    [Crossref]
  43. P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
    [Crossref]
  44. M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
    [Crossref]
  45. N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
    [Crossref]
  46. C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
    [Crossref]

2019 (3)

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

2018 (2)

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

2017 (4)

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
[Crossref]

2016 (2)

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

2015 (6)

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

2014 (5)

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

G. Demeter, “Coherence rephasing combined with spin-wave storage using chirped control pulses,” Phys. Rev. A 89, 063806 (2014).
[Crossref]

2013 (3)

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

2012 (3)

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

2011 (3)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

2010 (5)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

2009 (2)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

2008 (1)

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

2007 (2)

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

2005 (2)

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

1985 (1)

M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
[Crossref]

1964 (1)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

1962 (1)

J. R. Klauder and P. W. Anderson, “Spectral diffusion decay in spin resonance experiments,” Phys. Rev. 125, 912–932 (1962).
[Crossref]

Abella, I. D.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Afzelius, M.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

Ahlefeldt, R.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

Ahlefeldt, R. L.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

Anderson, P. W.

J. R. Klauder and P. W. Anderson, “Spectral diffusion decay in spin resonance experiments,” Phys. Rev. 125, 912–932 (1962).
[Crossref]

Askarani, M. F.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Bartholomew, J. G.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Beavan, S. E.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Ben-Kish, A.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Bettinelli, M.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Beyer, A. D.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Blakestad, R. B.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Bonarota, M.

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Böttger, T.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

Britton, J.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Bussìres, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Cavalli, E.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Chaneliere, T.

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Chanelière, T.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Chen, G.

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Chen, Y.-C.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-F.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chiaverini, J.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Cone, R. L.

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

Corrielli, G.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Craiciu, I.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Cristiani, M.

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Dajczgewand, J.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

Damon, V.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

de Riedmatten, H.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

DeMarco, B.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Demeter, G.

G. Demeter, “Coherence rephasing combined with spin-wave storage using chirped control pulses,” Phys. Rev. A 89, 063806 (2014).
[Crossref]

Du, S.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Etesse, J.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

Faraon, A.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Ferrier, A.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Gisin, N.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

Goldner, P.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

Gouë, J.-L. L.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

Gouet, J. L. L.

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Gouët, J. L. L.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

Gündogan, M.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Guo, G. C.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Guo, G.-C.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Han, Y. J.

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Hartmann, S. R.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Hastings-Simon, S. R.

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

He, D. Y.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Hedges, M. P.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Heshami, K.

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

Hoult, D. I.

M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
[Crossref]

Hu, J.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Hua, Y. L.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Hua, Y.-L.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Hume, D. B.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Itano, W. M.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Jobez, P.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Joseph, R. I.

M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
[Crossref]

Jost, J. D.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Kindem, J. M.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Klauder, J. R.

J. R. Klauder and P. W. Anderson, “Spectral diffusion decay in spin resonance experiments,” Phys. Rev. 125, 912–932 (1962).
[Crossref]

Klieber, R.

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

Kröll, S.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Kutluer, K.

K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

Lago-Rivera, D.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

Langer, C.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Langford, N. K.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Laplane, C.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Lauritzen, B.

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Lauro, R.

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Ledingham, P. M.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lee, M.-J.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Lei, M.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

Leibfried, D.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Lenhard, A.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

Li, C. F.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Li, C.-F.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Li, M. F.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Li, P.-Y.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Li, X.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Li, Y. L.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Li, Z.-F.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Liang, P.-J.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Lin, W. B.

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Liu, C.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Liu, X.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Longdell, J. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lorgere, I.

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Louchet-Chauvet, A.

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

Lovric, M.

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

Lutz, T.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Ma, Y.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Macfarlane, R. M.

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Marsili, F.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Mazzera, M.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Minár, J.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Miyazono, E.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Nam, S. W.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Ni, H. Q.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Nilsson, M.

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

Niu, Z. C.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Oblak, D.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Osellame, R.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Ozeri, R.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Puigibert, M. G.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Reichle, R.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Ricken, R.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

Riedmatten, H. D.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Rippe, L.

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

Rochman, J.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Rosenband, T.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Ruggiero, J.

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

Scarani, V.

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

Schaetz, T.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Schmidt, P. O.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Sellars, M. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Seri, A.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de Riedmatten, R. Osellame, and M. Mazzera, “Laser-written integrated platform for quantum storage of heralded single photons,” Optica 5, 934–941 (2018).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Shaw, M. D.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Silver, M. S.

M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
[Crossref]

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

Sinclair, N.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Slater, J. A.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

Suche, H.

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

Sun, Y.

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

Sun, Y. N.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Suter, D.

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

Tang, J. S.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Thiel, C. W.

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

Timoney, N.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

Tittel, W.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Usmani, I.

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

Verma, V.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Verma, V. B.

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Walmsley, I. A.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

Wang, I. C.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Wang, S.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Wang, Y. T.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Wineland, D. J.

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Wittig, S. M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Xiao, Y.-X.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Xu, J. S.

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

Yang, M.

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Yang, T.-S.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Yu, I. A.

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Yu, Y.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zha, G. W.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zhong, M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

Zhong, T.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Zhou, Z. Q.

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Zhou, Z.-Q.

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Zou, Y.

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al 5o12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

J. Lumin. (1)

T. Chaneliere, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgere, and J. L. L. Gouet, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
[Crossref]

J. Phys. B (1)

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave storage in 153Eu3+: Y2SiO5,” J. Phys. B 45, 124001 (2012).
[Crossref]

Laser Photon. Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Laser Phys. (1)

M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouet, and T. Chaneliere, “Photon echo with a few photons in two-level atoms,” Laser Phys. 24, 094003 (2014).
[Crossref]

Nat. Commun. (3)

I. Usmani, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 12 (2010).
[Crossref]

J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, and G. C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, “Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory,” Nat. Commun. 9, 3407 (2018).
[Crossref]

Nat. Photonics (1)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Nature (3)

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177 (2015).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussìres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

New J. Phys. (4)

E. Saglamyurek, N. Sinclair, J. A. Slater, K. Heshami, D. Oblak, and W. Tittel, “An integrated processor for photonic quantum states using a broadband light-matter interface,” New J. Phys. 16, 065019 (2014).
[Crossref]

J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet, J.-L. L. Gouë, and T. Chanelière, “Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window,” New J. Phys. 17, 023031 (2015).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Optica (1)

Phys. Rev. (1)

J. R. Klauder and P. W. Anderson, “Spectral diffusion decay in spin resonance experiments,” Phys. Rev. 125, 912–932 (1962).
[Crossref]

Phys. Rev. A (5)

M. S. Silver, R. I. Joseph, and D. I. Hoult, “Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation,” Phys. Rev. A 31, 2753–2755 (1985).
[Crossref]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[Crossref]

G. Demeter, “Coherence rephasing combined with spin-wave storage using chirped control pulses,” Phys. Rev. A 89, 063806 (2014).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

M. Afzelius, C. Simon, H. D. Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Phys. Rev. Appl. (3)

M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunication wavelength,” Phys. Rev. Appl. 12, 024062 (2019).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. D. Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Phys. Rev. B (1)

B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications,” Phys. Rev. B 85, 115111 (2012).
[Crossref]

Phys. Rev. Lett. (17)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Y.-H. Chen, M.-J. Lee, I. C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

M. Lovrić, D. Suter, A. Ferrier, and P. Goldner, “Faithful solid state optical memory with dynamically decoupled spin wave storage,” Phys. Rev. Lett. 111, 020503 (2013).
[Crossref]

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, “Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal,” Phys. Rev. Lett. 115, 070502 (2015).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref]

M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[Crossref]

M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles,” Phys. Rev. Lett. 99, 173602 (2007).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
[Crossref]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Science (1)

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       This document provides details of the PMT calibration

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the experimental setup. The main laser beam is split in two to be employed as preparation and control mode and input mode. The input mode can be injected through input 1 mode in the spin-wave AFC scheme or input 2 mode in the ROSE scheme. The yellow light beams represent optical paths for the spin-wave AFC memory scheme. The red beams denote the input and output mode for the ROSE scheme. Beam expander, BE; Faraday rotator, FR; half-wave plate, HWP; fiber coupler, FC; beam splitter, BS; polarizing beam splitter, PB; lens and mirror.
Fig. 2.
Fig. 2. (a) Energy level diagram of the $ {^7{F_0}}{ \to ^5}{D_0} $ transition of $ {^{{151}}{{\rm Eu}}^{{3} + }} :{{\rm Y}_{2}}{{\rm SiO}_{5}} $ at zero magnetic field. $ {f_0} $ (orange), $ {f_ + } $ (blue), and $ {f_ - } $ (green) denote optical transitions with different hyperfine levels. (b) Time sequence for the ROSE interference experiment. (c) Time sequence for the spin-wave AFC interference experiment. The triangles represent the optical pulses, while their frequencies are distinguished by the filled colors. The reference pulses are injected when the echoes come out. In the interference experiments, the time delays are fixed as $ \tau = 4.94\,\,\unicode{x00B5} {\rm s} $ for ROSE scheme and $ {\tau _s} = 1.7\,\,\unicode{x00B5} {\rm s} $ for spin-wave AFC scheme.
Fig. 3.
Fig. 3. Absorption profile of the sample. Black dots are experimental data collected in the bulk section, while the experimental data in the waveguide are represented in blue squares. Gaussian fitting gives the optical inhomegeneous broadening $ {\Gamma _{\rm inh}}({\rm FWHM}): 4.7\,\,{{\rm GHz}} $ in the bulk section and 11.8 GHz in the waveguide. Zero detuning corresponds to 516.848 THz.
Fig. 4.
Fig. 4. Photon echo amplitude (in logarithmic scale) as a function of time spacing between the two pulses. (a) Measurement performed in the waveguide section. Linear fitting gives $ {T_2} = 202 \pm 3 $ µs. (b) Measurement performed in the bulk section. Linear fitting gives $ {T_2} = 186 \pm 7 \,\, \unicode{x00B5} {\rm s}$.
Fig. 5.
Fig. 5. Normalized intensity of the output light as a function of the relative phases between the input pulse and reference pulse. Interference visibilities are fitted by using Eq. (1). (a) For the ROSE scheme, $ V = 0.97 \pm 0.02 $. (b) For the spin-wave AFC scheme, $ V = 0.99 \pm 0.03 $. (c) Examples of interference patterns for ROSE scheme. The blue line corresponds to data marked with a blue square, and the green line corresponds to data marked with a green square in (a). Black arrows indicate the peak positions. The peak of the blue curve is away from the original pulse center because of the imperfect interference in the tail of the pulse.
Fig. 6.
Fig. 6. (a) Storage efficiency as a function of storage time for the ROSE scheme. The maximum storage efficiency is deduced as $ {\eta _0} = 34.4\;\% $ at $ \tau = 0 $, and the extracted effective coherence time is $ {T_{2{\rm eff}}} = 37.4 \pm 0.9\,\,\unicode{x00B5} {\rm s} $. (b) Spin-wave AFC echo amplitude as a function of $ {\tau _s} $. $ {\tau _s} $ denotes the pulse spacing between the two control pulses, which is the spin-wave storage time. $ T_2^* $ is fitted as $ 3.3 \pm 0.2\,\,\unicode{x00B5} {\rm s} $.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( φ ) = I max 2 [ 1 + V sin ( φ + φ 1 ) ] ,
η = η T 2 ( O D ) 2 e O D e 4 τ / T 2 e f f ,

Metrics